Candidate	Centre	Candidate		
Name	Number	Number		
		2		

GCE AS/A level

1071/01

BIOLOGY/HUMAN BIOLOGY - BY1

A.M. TUESDAY, 11 January 2011 $1\frac{1}{2}$ hours

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1	4			
2	6			
3	14			
4	10			
5	7			
6	6			
7	13			
8	10			
Total	70			

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

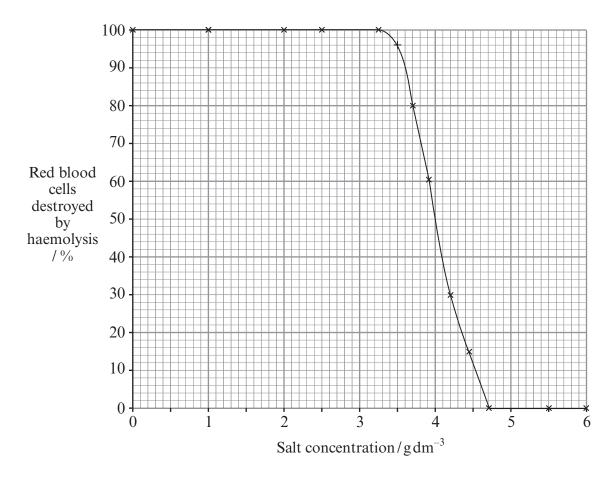
The quality of written communication will affect the awarding of marks.

1.	Inorganic ions are needed by living organisms. Complete the table below to give a function fo	r	
	each of the four ions. [4]	

Ion	Function
Magnesium	
Iron	
Phosphate	
Calcium	

(Total 4 marks)

2.	Complete the following passage by inserting the correct terms in the spaces provided.	[6]
	Cellulose is a fibrous molecule. It is a carbohydrate and is the main component of t	he
	of plants. Cellulose consists of chains	O
	glucose molecules which are joined together	by
	1-4 bonds. Each adjacent glucose molecule is rotated	by
	o resulting in a chain. Chains are held together	by
	bonds forming groups of chains known as	
	(Total 6 mark	(2)


PMT

BLANK PAGE

(1071-01) **Turn over.**

[1]

3. (a) An investigation was carried out in which red blood cells were placed in salt (sodium chloride) solutions of different concentrations. The percentage of cells destroyed by bursting (haemolysis) was recorded and the results shown in the graph below.

(i)	Explain, in terms of water potential, why red blood cells burst when placed in a solution that has a lower concentration than plasma. [3]
(ii)	State the salt concentration at which the number of cells haemolysed is equal to

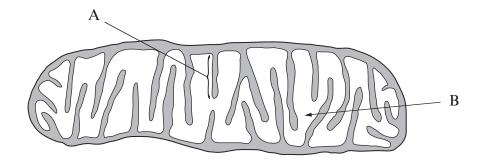
that not haemolysed.

PMT

The show	me of a solution containing a fixed potassium is experiment was carried out in different oxygen on in the table below.		centra	tion.	nd the res
	Oxygen concentration / arbitrary units	0	4	11	20
R	ate of potassium ion uptake / arbitrary units	7	27	92	100
(ii)	Using the information in the table, state with a which potassium ions are taken into the root.	ш ехр			

(1071-01) **Turn over.**

4. (a) Complete the table to show whether each role applies to mitosis, meiosis or both. If the role applies put a tick (\mathcal{I}) and a cross (\mathbf{x}) where it does not apply.


Role	Mitosis	Meiosis
Involved in growth		
Produces variation		
Produces haploid cells		
Occurs in plants		

[4]

(b) In the space below draw a labelled diagram to show a single chromosome as it appears during prophase of mitosis. [2]

	(c) 	Describe and explain what happens to chromosomes during anaphase of mitosis.	[3]
	(<i>d</i>)	Name the cell organelle responsible for the production of the spindle fibres.	[1]
		(Total 10 m	arks)
5.	(a)	When a triglyceride molecule is broken down name: (i) the products formed;	[2]
		(ii) the type of bond broken and describe the process.	[3]
	(b)	Describe two functions of lipids in plants.	[2]
		(Total 7 m	arks)

6. The diagram below shows an organelle found in a liver cell.

(a)	(i)	Name the organelle.	[1]
	(ii)	State the function of the organelle.	[1]
	(iii)	Name the structures labelled A and B in the diagram. A	[2]
(b)	Exp	Blain why liver cells have large numbers of these organelles present.	[2]
			(Total 6 marks)

7. (a) Complete the table below which compares DNA with messenger RNA (mRNA).	[4
---	----

Feature	DNA	mRNA
Name of sugar		
Number of carbon atoms in sugar		
Number of polynucleotide chains in molecule		
Location in cell		

(b) The table below shows the relative amounts of the four bases in DNA taken from three sources.

	Nitrogenous base (relative amounts)				
Cellular source of DNA	Adenine	Guanine	Cytosine	Thymine	
rat muscle	28.6	21.4	21.5	28.4	
wheat seed	27.3	22.7	22.9	27·1	
yeast	31.3	18.7	17·1	32.9	

(i)	Explain why the relative amount of adenine is almost the same as the relative amount of thymine in each source. [3]
(ii)	Explain why the base sequence of the DNA samples taken from a rat's bone marrow would be the same as those taken from the muscle of the same rat. [3]
(iii)	Explain how a sample of DNA from a rat sperm cell differs from that of a muscle cell from the same rat. [3]

(Total 13 marks)

Turn over.

8.	Answer one of the following. Any diagrams included in your answer must be fully annotated.								
	Either,	(a)	Des	Describe the properties of water and its functions in living organisms. [10]					
	Or,	<i>(b)</i>	(i)	Describe how inhibitors affect the rate of an enzyme catalysed react	ion. [7]				
			(ii)	Describe the advantages of using immobilised enzymes in induprocesses.	ustrial [3]				
					,				

(1071-01)

Examiner only

11	

(1071-01) **Turn over.**

Examiner only

12